Floquet–Andreev stable states in graphene Josephson junctions

0
  • Wang, YH, Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states at the surface of a topological insulator. Science 342453–457 (2013).

    ADS
    CASE
    PubMed

    Google Scholar

  • Mahmood, F. et al. Selective diffusion between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12306–310 (2016).

    CASE

    Google Scholar

  • Mciver, JW et al. Anomalous light-induced Hall effect in graphene. Nat. Phys. 1638–41 (2020).

    CASE
    PubMed

    Google Scholar

  • Uhrig, GS, Kalthoff, MH & Freericks, JK Positivity of spectral densities of delayed Floquet Green functions. Phys. Rev. Lett. 122130604 (2019).

    ADS
    CASE
    PubMed

    Google Scholar

  • Fausti, D. et al. Light-induced superconductivity in a band-ordered cuprate. Science 331189–191 (2011).

    ADS
    CASE
    PubMed

    Google Scholar

  • Matsunaga, R. et al. Collective pseudospin precession induced by light resonant with the Higgs mode in a superconductor. Science 3451145-1149 (2014).

    ADS
    MathSciNet
    CASE
    PubMed
    MATH

    Google Scholar

  • Rudner, MS & Lindner, NH Engineering band structure and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2229–244 (2020).

    CASE

    Google Scholar

  • Jiang, L. et al. Majorana fermions in equilibrium and entrained cold atom quantum wires. Phys. Rev. Lett. 106220402 (2011).

    ADS
    PubMed

    Google Scholar

  • Bauer, B. et al. Topologically protected braiding in a single thread using Floquet Majorana modes. Phys. Rev. B 100041102(R) (2019).

    ADS

    Google Scholar

  • Clark, LW et al. Interacting Floquet polaritons. Nature 571532-536 (2019).

    CASE
    PubMed

    Google Scholar

  • Wintersperger, K. et al. Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 161058-1063 (2020).

    CASE

    Google Scholar

  • Freericks, JK, Krishnamurthy, HR & Pruschke, T. Theoretical description of time-resolved photoemission spectroscopy: application to pump-probe experiments. Phys. Rev. Lett. 102136401 (2009).

    ADS
    CASE
    PubMed

    Google Scholar

  • D’alessio, L. & Rigol, M. Long-term behavior of periodically trained interacting isolated lattice systems. Phys. Rev. X 4041048 (2014).

    Google Scholar

  • Abanin, DA, De Roeck, W., Ho, WW & Huveneers, F. Efficient Hamiltonians, prethermization, and slow energy absorption in periodically driven multi-body systems. Phys. Rev. B 95014112 (2017).

    ADS

    Google Scholar

  • Mori, T., Ikeda, TN, Kaminishi, E. & Ueda, M. Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J.Phys. B 51112001 (2018).

    ADS

    Google Scholar

  • Ponte, P., Chandran, A., Papić, Z. & Abanin, DA Quantum ergodic and localized periodically trained many-body systems. Ann. Phys. 353196-204 (2015).

    ADS
    MathSciNet
    CASE
    MATH

    Google Scholar

  • Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S. & Lupascu, A. Observation of Floquet states in a highly trained artificial atom. Phys. Rev. Lett. 115133601 (2015).

    ADS
    PubMed

    Google Scholar

  • Fuchs, GD, Dobrovitski, VV, Toyli, DM, Heremans, FJ & Awschalom, DD Gigahertz dynamics of a strongly entrained single quantum spin. Science 3261520-1522 (2009).

    ADS
    CASE
    PubMed

    Google Scholar

  • Koski, JV et al. Floquet spectroscopy of a strongly entrained quantum dot charge qubit with a microwave resonator. Phys. Rev. Lett. 121043603 (2018).

    ADS
    CASE
    PubMed

    Google Scholar

  • Jamali, S. et al. Floquet spin states in OLEDs. Nat. Common. 12465 (2021).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Huang, K.-F. et al. Interference of the bound states of the Cooper Andreev quartet in a graphene-based multi-terminal Josephson junction. Preprint at https://arxiv.org/abs/2008.03419 (2020).

  • Melin, R., Danneau, R., Yang, K., Caputo, JG & Doucot, B. Engineering the Floquet spectrum of superconducting multiterminal quantum dots. Phys. Rev. B 100035450 (2019).

    ADS
    CASE

    Google Scholar

  • Melin, R., Caputo, JG, Yang, K. & Doucot, B. Simple Floquet–Wannier–Stark–Andreev viewpoint and emergence of low-energy ladders in a voltage-biased three-terminal Josephson junction. Phys. Rev. B 95085415 (2017).

    ADS

    Google Scholar

  • Nichele, F. et al. Connecting Andreev bound states and supercurrents in hybrid Josephson junctions. Phys. Rev. Lett. 124226801 (2020).

    ADS
    CASE
    PubMed

    Google Scholar

  • Bretheau, L. et al. Tunneling spectroscopy of Andreev states in graphene. Nat. Phys. 13756–760 (2017).

    CASE

    Google Scholar

  • Pillet, JD et al. Andreev bound states in carbon nanotubes carrying supercurrents have been revealed. Nat. Phys. 6965–969 (2010).

    CASE

    Google Scholar

  • Giazotto, F., Peltonen, JT, Meschke, M. & Pekola, JP Superconducting proximity transistor with quantum interference. Nat. Phys. 6254-259 (2010).

    CASE

    Google Scholar

  • Lee, G.-H., Kim, S., Jhi, SH & Lee, H.-J. Ultimately short ballistic graphene vertical Josephson junctions. Nat. Common. 66181 (2015).

    ADS
    CASE
    PubMed

    Google Scholar

  • Choi, DH et al. Van-der-Waals tunneling spectroscopy for single-walled carbon nanotubes. Carbon 113237-242 (2017).

    CASE

    Google Scholar

  • Le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase-controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100197002 (2008).

    ADS
    PubMed

    Google Scholar

  • Viljas, JK & Heikkila, TT Electron-phonon heat transfer in single-layer and bi-layer graphene. Phys. Rev. B 81245454 (2010).

    ADS

    Google Scholar

  • Walsh, ED et al. Graphene-based Josephson junction single-photon detector. Phys. Rev. Appl. 8024022 (2017).

    ADS

    Google Scholar

  • Tikhonov, KS, Skvortsov, MA & Klapwijk, TM Superconductivity in the presence of microwaves: complete phase diagram. Phys. Rev. B 97184516 (2018).

    ADS
    CASE

    Google Scholar

  • Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically ordered quantum systems. Phys. Rev. B 82235114 (2010).

    ADS

    Google Scholar

  • Dehghani, H., Oka, T. & Mitra, A. Non-equilibrium electrons and Hall conductance of a Floquet topological insulator. Phys. Rev. B 91155422 (2015).

    ADS

    Google Scholar

  • He, QL et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357294–299 (2017).

    ADS
    MathSciNet
    CASE
    PubMed
    MATH

    Google Scholar

  • Verdeny, A., Puig, J. & Mintert, F. Quasi-periodically driven quantum systems. Z. Naturforsch. A 71897–907 (2016).

    ADS
    CASE

    Google Scholar

  • Crowley, PJD, Martin, I. & Chandran, A. Topological classification of quasiperiodically driven quantum systems. Phys. Rev. B 99064306 (2019).

    ADS
    CASE

    Google Scholar

  • Sentef, MA et al. Theory of formation of Floquet bands and local pseudospin textures in pump-probe photoemission from graphene. Nat. Common. 67047 (2015).

    ADS
    CASE
    PubMed

    Google Scholar

  • Wang, L. et al. One-dimensional electrical contact with a two-dimensional material. Science 342614–617 (2013).

    ADS
    CASE
    PubMed

    Google Scholar

  • Beenakker, CWJ Symposium: Andreev reflection and Klein tunneling effect in graphene. Rev. mod. Phys. 801337–1354 (2008).

    ADS
    CASE

    Google Scholar

  • Titov, M. & Beenakker, CWJ Josephson effect in ballistic graphene. Phys. Rev. B 74041401(R) (2006).

    ADS

    Google Scholar

  • Beenakker, CW Specular reflection of Andreev in graphene. Phys. Rev. Lett. 97067007 (2006).

    ADS
    CASE
    PubMed

    Google Scholar

  • Bardeen, J. Tunneling from a Multiparticle Point of View. Phys. Rev. Lett. 657-59 (1961).

    ADS
    CASE

    Google Scholar

  • Dynes, RC, Narayanamurti, V. & Garno, JP Direct measurement of quasiparticle lifetime broadening in a tightly coupled superconductor. Phys. Rev. Lett. 411509-1512 (1978).

    ADS
    CASE

    Google Scholar

  • Semenov, AV, Devyatov, IA, De Visser, PJ & Klapwijk, TM Coherent excited states in superconductors due to a microwave field. Phys. Rev. Lett. 117047002 (2016).

    ADS
    CASE
    PubMed

    Google Scholar

  • Share.

    About Author

    Comments are closed.