Non-Hermitian Topological Whisper Gallery | Nature

0
  • 1.

    Lord Rayleigh The theory of sound Flight. II, 1st edition (MacMillan, 1878).

  • 2.

    Lord Rayleigh CXII. The whispering gallery problem. Phil. Mag. 20, 1001–1004 (1910).

    MATH
    Item

    Google Scholar

  • 3.

    Fleury, R., Sounas, DL & Alù, A. Parity-time symmetry in acoustics: theory, devices and potential applications. IEEE J. Sel. Mountain peak. Quantum electron. 22, 121-129 (2016).

    ADS
    Item

    Google Scholar

  • 4.

    Gupta, SK et al. Parity-time symmetry in complex non-Hermitian optical media. Av. Mater. 32, 1903639 (2020).

    CASE

    Google Scholar

  • 5.

    Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H. & Christensen, J. Topological sound. Common. Phys. 1, 97 (2018).

    Item

    Google Scholar

  • 6.

    Khanikaev, AB et al. Photonic topological isolators. Nat. Mater. 12, 233-239 (2013).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 7.

    Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CASE

    Google Scholar

  • 8.

    Foa Torres, LEF Perspective on the topological states of non-Hermitian networks. J. Phys. Mater. 3, 014002 (2019).

    Item
    CASE

    Google Scholar

  • 9.

    Lee, TE Abnormal edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).

    ADS
    PubMed
    Item
    CASE

    Google Scholar

  • ten.

    Wang, M., Ye, L., Christensen, J. & Liu, Z. Valley physics in non-Hermitian man-made acoustic boron nitride. Phys. Rev. Lett. 120, 246601 (2018).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 11.

    Zhang, Z., López, MR, Cheng, Y., Liu, X. & Christensen, J. Non-Hermitian second-order sonic topological isolator. Phys. Rev. Lett. 122, 195501 (2019).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 12.

    Zhao, H. et al. Non-Hermitian topological light direction. Science 365, 1163-1166 (2019).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 13.

    Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 14.

    Song, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).

    ADS
    MathSciNet
    CASE
    PubMed
    Item

    Google Scholar

  • 15.

    Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    ADS
    MathSciNet
    CASE
    PubMed
    Item

    Google Scholar

  • 16.

    Xiao, L. et al. Non-Hermitian bulk-frontier correspondence in quantum dynamics. Nat. Phys. 16, 761-766 (2020).

    CASE
    Item

    Google Scholar

  • 17.

    Helbig, T. et al. Generalized mass-boundary correspondence in non-Hermitian topoelectric circuits. Nat. Phys. 16, 747-750 (2020).

    CASE
    Item

    Google Scholar

  • 18.

    Weidemann, S. et al. Topological funnel of light. Science 368, 311-314 (2020).

    ADS
    MathSciNet
    CASE
    PubMed
    Item

    Google Scholar

  • 19.

    Parto, M. et al. Laser in Edge mode in active 1D topological networks. Phys. Rev. Lett. 120, 113901 (2018).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 20.

    St-Jean, P. et al. Laser in the topological edge states of a one-dimensional network. Nat. Photon. 11, 651-656 (2017).

    ADS
    CASE
    Item

    Google Scholar

  • 21.

    Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Common. 9, 981 (2018).

    ADS
    PubMed
    PubMed Central
    Item
    CASE

    Google Scholar

  • 22.

    Bandres, MA et al. Topological insulating laser: experiments. Science 359, eaar4005 (2018).

    PubMed
    Item
    CASE

    Google Scholar

  • 23.

    Klembt, S. et al. Exciton-polariton topological isolator. Nature 562, 552-556 (2018).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 24.

    Bahari, B. et al. Non-reciprocal laser in topological cavities of arbitrary geometries. Science 358, 636-640 (2017).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 25.

    Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246-250 (2020).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 26.

    Hutson, AR, McFee, JH & White, DL Ultrasonic amplification in CdS. Phys. Rev. Lett. 7, 237-239 (1961).

    ADS
    CASE
    Item

    Google Scholar

  • 27.

    Arnold, H. & Crandall, I. The thermophone as a precision sound source. Phys. Tower. ten, 22-38 (1917).

    ADS
    Item

    Google Scholar

  • 28.

    Xiao, L. et al. Flexible, expandable and transparent thin-film speakers made of carbon nanotubes. Nano Lett. 8, 4539-4545 (2008).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 29.

    Aliev, AE, Lima, MD, Fang, S. & Baughman, RH Generation of underwater sounds using carbon nanotube projectors. Nano Lett. ten, 2374-2380 (2010).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 30.

    Ma, T. & Shvets, G. All-Si valley-Hall Photonic topological isolator. New J. Phys. 18, 025012 (2016).

    ADS
    Item
    CASE

    Google Scholar

  • 31.

    Ye, L. et al. Observation of acoustic states of valley vortex and locked beam separation in valley chirality. Phys. Rev. B 95, 174106 (2017).

    ADS
    Item

    Google Scholar

  • 32.

    Lu, J. et al. Observation of topological transport in sound valleys in sonic crystals. Nat. Phys. 13, 369-374 (2017).

    CASE
    Item

    Google Scholar

  • 33.

    Ni, X., Gorlach, MA, Alù, A. & Khanikaev, AB Topological edge states in acoustic kagome networks. New J. Phys. 19, 055002 (2017).

    ADS
    MathSciNet
    Item
    CASE

    Google Scholar

  • 34.

    Zhang, Z. et al. Directional acoustic antennas based on Valley-Hall topological insulators. Av. Mater. 30, 1803229 (2018).

    Item
    CASE

    Google Scholar

  • 35.

    Mei, J., Wu, Y., Chan, CT & Zhang, Z.-Q. Study of the first principles of Dirac and Dirac-type cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012).

    ADS
    Item
    CASE

    Google Scholar

  • 36.

    Makwana, MP & Craster, RV Geometrically navigate topological plate modes around smooth, tight bends. Phys. Rev. B 98, 184105 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 37.

    Ochiai, T. Photonic realization of the (2 + 1) dimensional parity anomaly. Phys. Rev. B 86, 075152 (2012).

    ADS
    Item
    CASE

    Google Scholar

  • 38.

    Vesterinen, V., Niskanen, AO, Hassel, J. & Helisto, P. Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett. ten, 5020-5024 (2010).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 39.

    Anderson, PW Lack of diffusion in some random networks. Phys. Tower. 109, 1492-1505 (1958).

    ADS
    CASE
    Item

    Google Scholar

  • 40.

    Stützer, S. et al. Anderson photonic topological isolators. Nature 560, 461-465 (2018).

    ADS
    PubMed
    Item
    CASE

    Google Scholar

  • 41.

    Liu, G.-G. et al. Anderson’s topological isolator in disordered photonic crystals. Phys. Rev. Lett. 125, 133603 (2020).

    ADS
    CASE
    PubMed
    Item

    Google Scholar

  • 42.

    Zangeneh-Nejad, F. & Fleury, R. Signal filtering induced by disorders with topological metamaterials. Av. Mater. 32, 2001034 (2020).

    CASE
    Item

    Google Scholar


  • Source link

    Share.

    About Author

    Leave A Reply