Quantum abnormal Hall byte driven by orbital magnetism in bilayer graphene

0
  • 1.

    Chang, C.-Z. et al. Experimental observation of the quantum abnormal Hall effect in a magnetic topological insulator. Science 340, 167-170 (2013).

    ADS
    CASE
    Item

    Google Scholar

  • 2.

    Tenasini, G. et al. Giant Abnormal Hall Effect in a Quasi-Two-Dimensional Layered Antiferromagnetic Co1/3NbS2. Phys. Rev. Res. 2 (2020).

  • 3.

    Zhao, Y.-F. et al. Adjustment of the Chern number in quantum anomalous Hall insulators. Nature 588, 419-423 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 4.

    Tschirhart, CL et al. Imaging of orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323-1327 (2021).

    ADS
    CASE
    Item

    Google Scholar

  • 5.

    Sharpe, AL et al. Ferromagnetism emerge nearly three-quarters filling the twisted bilayer graphene. Science 365, 605-608 (2019).

    ADS
    CASE
    Item

    Google Scholar

  • 6.

    Serlin, M. et al. Intrinsic quantified abnormal Hall effect in a moiré heterostructure. Science 367, 900-903 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 7.

    Polshyn, H. et al. Magnetic order electrical switching in a Chern orbital isolator. Nature 588, 66-70 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 8.

    Chen, G. et al. Tunable correlated Chern isolator and ferromagnetism in a moiré superlattice. Nature 579, 56-61 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 9.

    Zhang, F., Jung, J., Fiete, GA, Niu, Q. & MacDonald, AH Spontaneous Hall quantum states in chiral stacked few-layered graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    ADS
    Item

    Google Scholar

  • ten.

    Zhang, F. Spontaneous disruption of chiral symmetry in bilayer graphene. Synth. Meet. 210, 9-18 (2015).

    CASE
    Item

    Google Scholar

  • 11.

    Nandkishore, R. & Levitov, L. Abnormal quantum Hall state in bilayer graphene. Phys. Rev. B 82 (2010).

  • 12.

    Yu, R. et al. Abnormal Hall effect quantified in magnetic topological insulators. Science 329, 61-64 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 13.

    Zhang, F., Kane, CL & Mele, EJ Surface texture magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 46404 (2013).

    ADS
    Item

    Google Scholar

  • 14.

    Zhu, J., Su, J.-J. & MacDonald, AH Voltage-controlled magnetic reversal in Chern orbital isolators. Phys. Rev. Lett. 125, 227702 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 15.

    Xiao, D., Yao, W., Niu, Q. Valley contrast physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    ADS
    Item

    Google Scholar

  • 16.

    Lee, Y. et al. Tunable valley division due to the topological orbital magnetic moment in the quantum dot contacts of bilayer graphene. Phys. Rev. Lett. 124, 126802 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 17.

    Ju, L. et al. Tunable excitons in bilayer graphene. Science 358, 907-910 (2017).

    ADS
    CASE
    Item

    Google Scholar

  • 18.

    Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210-214 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 19.

    Jiang, L. et al. Soliton-dependent plasmon reflection on the walls of the bilayer graphene domain. Nat. Mater. 15, 840-844 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 20.

    Ju, L. et al. Topological transport of valleys on the walls of the bilayer graphene domain. Nature 520, 650-655 (2015).

    ADS
    CASE
    Item

    Google Scholar

  • 21.

    Geisenhof, FR et al. The movement of solitons induced by the anisotropic deformation changes the stacking order and band structure of graphene multilayers. Implications for the transport of loads. ACS Appl. Nano-Mother. 2, 6067-6075 (2019).

    CASE
    Item

    Google Scholar

  • 22.

    Moser, J., Barreiro, A. & Bachtold, A. Cleanup of Current Induced Graphene. Appl. Phys. Lett. 91, 163513 (2007).

    ADS
    Item

    Google Scholar

  • 23.

    Weitz, RT, Allen, MT, Feldman, BE, Martin, J. & Yacoby, A. Broken symmetry states in double-door suspended bilayer graphene. Science 330, 812-816 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 24.

    Velasco, J. et al. Transport spectroscopy of symmetry breaking insulating states in bilayer graphene. Nat. Nanotechnology. 7, 156-160 (2012).

    ADS
    CASE
    Item

    Google Scholar

  • 25.

    Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Ground state spontaneously gaping in suspended bilayer graphene. Phys. Rev. Lett. 108, 76602 (2012).

    ADS
    CASE
    Item

    Google Scholar

  • 26.

    Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, AF A family of finite temperature electronic phase transitions in graphene multilayers. Science 362, 324-328 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 27.

    Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, AF Transport limited by electron-hole collision in neutrally charged bilayer graphene. Nat. Phys. 13, 1207-1214 (2017).

    CASE
    Item

    Google Scholar

  • 28.

    Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry disruption in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 66801 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 29.

    Li, J., Tupikov, Y., Watanabe, K., Taniguchi, T. & Zhu, J. Efficient Landau level diagram of bilayer graphene. Phys. Rev. Lett. 120, 47701 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 30.

    Martin, J., Feldman, BE, Weitz, RT, Allen, MT & Yacoby, A. Local compressibility measurements of correlated states in suspended bilayer graphene. Phys. Rev. Lett. 105, 256806 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 31.

    Lee, K. et al. Bilayer graphene. Chemical potential and quantum Hall ferromagnetism in bilayer graphene. Science 345, 58-61 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 32.

    Velasco, J. et al. Concurrent ordered states with fill factor two in bilayer graphene. Nat. Common. 5, 4550 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 33.

    Shi, Y. et al. Energy gaps and layer polarization of whole and fractional quantum Hall states in bilayer graphene. Phys. Rev. Lett. 116, 56601 (2016).

    ADS
    Item

    Google Scholar

  • 34.

    Zhang, J., Nandkishore, R. & Rossi, E. Selection of order versus disorder in bilayer graphene. Phys. Rev. B 91, 1–6 (2015).

    Google Scholar

  • 35.

    Ki, D.-K. & Morpurgo, AF High quality graphene suspended multi-terminal devices. Nano Lett. 13, 5165-5170 (2013).

    ADS
    CASE
    Item

    Google Scholar

  • 36.

    Lee, DS, Skákalová, V., Weitz, RT, Klitzing, K. von & Smet, JH Transconductance fluctuations as a probe for quantum Hall states induced by the interaction in graphene. Phys. Rev. Lett. 109, 56602 (2012).

    ADS
    Item

    Google Scholar

  • 37.

    Kumar, M., Laitinen, A. & Hakonen, P. Unconventional fractional quantum Hall states and Wigner crystallization in suspended Corbino graphene. Nat. Common. 9, 2776 (2018).

    ADS
    Item

    Google Scholar

  • 38.

    Velasco, J. et al. Transport measurement of Landau level differences in bilayer graphene with control of the polarization of the layer. Nano Lett. 14, 1324-1328 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 39.

    Ki, D.-K., Fal’ko, VI, Abanin, DA & Morpurgo, AF Observation of the even-denominator fractional quantum Hall effect in suspended bilayer graphene. Nano Lett. 14, 2135-2139 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 40.

    Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. United States 115, 10938-10942 (2018).

    ADS
    MathSciNet
    CASE
    Item

    Google Scholar

  • 41.

    Barlas, Y., Côté, R., Nomura, K. & MacDonald, AH Cyclotron resonance at the intra-Landau level in bilayer graphene. Phys. Rev. Lett. 101, 97601 (2008).

    ADS
    Item

    Google Scholar

  • 42.

    Zibrov, AA et al. Phases of composite fermions in tunable interaction in a semi-filled bilayer-graphene Landau level. Nature 549, 360-364 (2017).

    ADS
    CASE
    Item

    Google Scholar

  • 43.

    Abanin, DA & Levitov, LS Conformal invariance and shape-dependent conductance of graphene samples. Phys. Rev. B 78 (2008).


  • Source link

    Share.

    About Author

    Leave A Reply